

		-		National	5 Chemistry		740		u	Tra	ffic L	ight
		JAB chem			onic Bonding		JAB chem		Lesson	Red	Amber	Green
/X		are form noble gas		atoms lose or gain elec	ctrons to obtain the sta	ble electron a	rrangement			\odot	:	\odot
29 30	In ge		to form	s lose electrons positive ions Na ⁺ + e ⁻ _{2,8}	to form	ntoms gain elec n negative ions C 2,i	5			:: :	:	0
31	Ionic	bonds a	re the el	ectrostatic attraction b	etween positive and ne	egative ions.				$\overline{\mathbf{O}}$	\bigcirc	\odot
32					m lattice structures of o n surrounded by negati ositive ions.					ŝ	:	٢
				e high melting and boili eak up the lattice.	ing points because stro	ng ionic bond	s must be			$\overline{\mathbf{O}}$	☺	\odot
				ls are soluble in water. ules to surround the se		ttice structure	breaks up			<u>(;)</u>	(;)	\odot
25	Ionic	c compou	nds con	duct electricity only wh e ions to be free to mov	en molten or in solutio	on as the lattic	e structure			\odot	:	\odot
36	Cond		ionic co	ompounds can be expla		of ions toward	ls oppositel	у		$\overline{\mathbf{S}}$		\odot
-		Type of I Meta (Metals Cova (Non-met	Bonding allic s only) allent als only)	Conduction as a Solid × ×	Conduction as a Liquid	Conduction as a metals do dissolve in v	D not					
		(Metals + N		~	•	•						ĺ

Na						•			on Ba			3	AB	che	M
Traffic	: Lights		Unit 1.2b Covalent Bonding												
Outcome	<u>Original</u> Specimen	<u>New</u> Specimen						<u>Nat5</u>							
	<u>Paper</u>	Paper	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>							
17 18					mc5										
19 22						L3a		L3a							
20		mc1					mc3								
21	mc4 L7b(i)	mc4 L7b(i)	L7a(ii)	L4a	L1c(i)	L3b	mc4 L10b	mc6							
23															
24	L7b(ii)	L7b(ii)		mc5 L14a(ii)	L11c		L4c								
25															
26	mc1						mc6								
27															
28															
29 30				L11a			mc5	mc7							
31															
32							L7a								
33					mc5										
34															
35	mc3	mc3		L9b(ii)			L7b(i)								
36															
-			L2a		mc6	L3d	mc6	mc8							
Marking Scheme	Back of Paper	Back of Paper	<u>SQA Nat5</u> 2014 Msch	<u>SQA Nat5</u> 2015 Msch	<u>SQA Nat5</u> 2016 Msch	<u>SQA Nat5</u> 2017 Msch	<u>SQA Nat5</u> 2018 Msch	<u>SQA Nat5</u> 2019 Msch							

Nat5	Answer	% Correct	Reasoning										
			🗷 A this structure shows metallic bonding										
2015		70	⊠B this structure shows ionic bonding										
5	D	/8	NC this structure shoes molecular covalent bonding										
			☑D this structure shows covalent network bonding										
001/			f X A ionic compounds contain at least one metal and one non-metal in compound										
2016	D	70	${old P}$ B monatomic substances are single atoms with no bonds between them										
5	В	78	$oxtimes \mathcal{C}$ covalent network compounds e.g. SiO2 are compounds with many covalent bonds										
			☑D covalent molecular compounds e.g. H₂O are compounds with covalent bonds inside										
2010			\mathbb{Z} A Oxygen exists a diatomic O ₂ molecules										
2018	В		ZB Helium is a monatomic noble gas in group 0										
3	D	-	SC Bromine exists as diatomic Br₂ molecules										
_			⊠D Hydrogen exists as diatomic H₂ molecules										
2018	•		Hydrogen bromide has the formula HBr using the cross-over rule.										
4	D	-	The correct structure for this can only be linear.										
–													
2018			$\square A$ Na atoms have electron arrangement 2,8,1 \therefore Na ⁺ ions have arrangement 2,8										
	Δ	_	B Mg atoms have electron arrangement 2,8,2 \therefore Mg ⁺ ions have arrangement 2,8,1										
5			SCF atoms have electron arrangement 2,7 ∴ F ⁺ ions have arrangement 2,6										
			■D Ne atoms have electron arrangement 2,8 ∴ Na ⁺ ions have arrangement 2,7										
2018			EA Bonding type is covalent molecular as it does not conduct and has low mpt/bpt Reading type is ionic as is does not conduct as solid but does conduct as liquid										
	D	-	Image: B Bonding type is ionic as is does not conduct as solid but does conduct as liquid Image: B Bonding type is matallic as it conducts both as a solid and a liquid										
6	U		EC Bonding type is metallic as it conducts both as a solid and a liquid										
			Image: Discoveries covalent network as it does no conduct and has very high mpt										
			HF F ₂ O CF ₄ PF ₃										
2019													
6	D	-	O_{F}										
			$ H - F _F$										
			Linear Angular Tetrahedral Trigonal Pyramidal										
			\square A Na ⁺ electron arrangement is 2,8 and O^{2-} electron arrangement is 2,8										
2019			■A Na electron arrangement is 2,3 and 6 ⁻ electron arrangement is 2,8										
7	A	-	$\boxtimes C$ K ⁺ electron arrangement is 2,8,8 and Br ⁻ electron arrangement is 2,8,18,8										
/			\mathbb{Z} D Mg ²⁺ electron arrangement is 2,8 and Cl ⁻ electron arrangement is 2,8,8										
			Image: Section of a rangement is 2,0 and created of a rangement is 2,0,0 Image: Section of a rangement is 2,0 and created of a rangement is 2,0,0 Image: Section of a rangement is 2,0 and created of a rangement is 2,0,0 Image: Section of a rangement is 2,0 and created of a rangement is 2,0,0 Image: Section of a rangement is 2,0 and created of a rangement is 2,0,0 Image: Section of a										
2019			☑B ionic compounds will conduct is both the molten/liquid state and in solution										
8	В	-	SC ionic potassium nitrate in the solid state is a non-conductor										
0			\blacksquare D hexane C_6H_{14} is a hydrocarbon and is covalent molecular and is a non-conductor										
		1											

Nat5	Answer			Reasoning							
		Bonding Type		Features of Bonding							
	[Covalent		valent bonding do not conduct nave very high melting points (
	Covalent Network	Network must be broken before melting can take place									
2014	Ionic Lattice	Ionic Ionic compounds are all solids at room temperature with high mpt. Ionic compounds do not conduct as solids as ions are not free to move									
2a	Metallic Lattice	Lattice conduct electricity when molten or in solution as the ions become free to mov All metallic substances conduct as solids or liguids. All metallic substances conduct as solids or liguids.									
Lu	Discrete Covalent	Metallic									
	Molecular	Lattice	Metals have a range of melting point ranging from low to high Lattice e.g. mercury mpt = -39°C and iron mpt=1538°C								
		Discrete Covalent Molecular	Discrete Covalent Molecular Molecular Discrete Covalent Molecular Molecular Discrete Covalent Molecular Discrete Covalent As there are weak bonds between molecules, melting and boiling points are as there are no strong bonds to be broken between molecules.								
2014 7a(ii)	Diagram showing:	H	N H) or (H@	N BH						
2015 4a	Diagram showing:	H	S H) or (H@	S S S H						
2015	T	Solid ionic co	mpounds are u	nable to conduct a	s the ions are locked						
	Ions	tightly in an ionic lattice. On melting or dissolving in water, ions									
9b(ii)	free/able to move	become free to move and will conduct.									
2015			Cl _(g) —	→ C ⁺ (g) +	e ⁻						
11a	2,8,6		2,8,7	2,8,6	0						
2015 14a(ii)	Covalent	first assumption compounds are points and cond Titanium (IV) of temperature a	V) chloride is a on would be tha always solids a duct electricity chloride contain nd does not con	compound of a metal t it contains ionic bou t room temperature when in the liquid/m is covalent bonding as	nding. However, ionic with high melting olten state. s it is a liquid at room ne liquid state. Metallic						
2016 1c(i)	Trigonal pyramidal	HCI HCI	H₂O H H	NH3 H N Marine H	СН4 Н Н Н С 41111 Н						
		Linear	Bent	Trigonal Pyramidal	tetrahedral						

2016 11c	weak strong	The bonds <i>inside</i> molecules are strong covalent bonds which required much energy to break them. The bonds <i>between</i> molecules are weak bonds which are easier to overcome and break.									
2017 3a	Diagram showing:										
2017 3b	tetrahedral	HCI H ₂ O NH ₃ CH ₄ H CI H H H H H Linear Angular Trigonal Pyramidal Tetrahedral									
2017 3d	low no high no	Chloromethane CH ₃ Cl is covalent molecular because it contains non-metals in the compound and is a gas at room temperature indicating a low melting point. Covalent substances do not conduct in any state. Sodium chloride is ionic because it is a compound of a metals and non-metal. Ionic compounds are all have									
2018 4c	stronger intermolecular	high melting points and do no conduct in the solid state. The process of evaporation/boiling does not change the strong covalent bonds inside a molecule. Boiling/evaporation is dependent on the weaker intermolecular bonds between molecules. The higher boiling point of butane compared to isobutene is due to the stronger intermolecular bonds between butane molecules compared to isobutene molecules.									
2018 7 a	Lattice	Ionic compounds have a structure of alternating positive and negative ions in each direction. $-+$ $+-$ 									
2018 7b(i)	Ions are free to move	In the solid state, ions are locked together in a lattice structure and cannot move. The circuit cannot be completed without the movement of ions. In the liquid/molten state or the solution state, ions are free to move and will compete the circuit.									
2018 10b	Answer showing:	H N H or H N H									
2019 3a	One diagram from:										

Na	115			Pas	st Pa	aper	Qu	estic	on B	ank			3	ABC		
Traffic	: Lights			Uni	t 1 .3	2b (ova	lent	Bon	ding					ne	
Outcome	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>	<u>Int2</u>
ourcome	2000	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	2006	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>
17 18							L2a									
19 22			L4b													L3b
20			mc20								mc5					
21	L4c				L4a		L2b		L5a		L3b(i) L3b(ii)	L2a L2b	mc9	mc6	L4a	L2a
23																
24					L13a			L13a(ii)							L4b	L2b(i) L5a
25																
26			L2b(ii)					mc6			L3a		L1a	L6b		
27			L2b(i)													
28				L12b												
29				mc6												
30				mee												
31																
32 33										mc9						
33																
35													mc10			
36																
-						mc7	mc6		mc10			L1a	mc7		mc7	
Marking Scheme	Not Published	Not Published	Not Published	<u>SQA Int2</u> 2003 MSch	<u>SQA Int2</u> 2004 MSch	<u>SQA Int2</u> 2005 MSch	<u>SQA Int2</u> 2006 MSch	<u>SQA Int2</u> 2007 MSch	<u>SQA Int2</u> 2008 MSch	<u>SQA Int2</u> 2009 MSch	<u>SQA Int2</u> 2010 MSch	<u>SQA Int2</u> 2011 MSch	<u>SQA Int2</u> 2012 MSch	<u>SQA Int2</u> 2013 MSch	<u>SQA Int2</u> 2014 MSch	<u>SQA Int2</u> 2015 MSch

Int2	Answer	% Correct		Reasoning											
2002			Туре	рН	Ions in Solution										
2002	Λ	75	Acid	pHx7	Concentration of H^{+} > Concentration of OH^{-}										
20	A	15	Neutral e.g. pure water	рН=7	Concentration of H^+ = Concentration of OH^-										
			Alkali pH>7 Concentration of OH -> Concentration of H ⁺												
2003	~	22	Compound formula: X2O3	npound formula: X_2O_3 \therefore Valency of X must be 3 forming X^{3*} ion nation: X $\longrightarrow X^{3*} + 3e^{-}$ (X loses 3 electrons)											
6	D	33	Equation: X> X ³⁺	+ 3e ⁻ ((X loses 3 electrons)										
2005	Δ	50	B Metallic substances cond	Ionic compounds conduct as liquids but not as solids & have high melting points Metallic substances conduct as both solids and liquids											
7	7		🗷 C Covalent networks do not conduct in any state and have high melting points												
			🗷 D Covalent molecular do no	ot cond	uct in any state and have low melting points										

		1											
2006			☐ A Lead is a metal and fluorine is a non-metal ∴ ionic bonding in compound										
1	Α	73	■ Sulphur and oxygen are both non-metals covalent bonding in compound										
6	•••		☑C carbon and nitrogen are both non-metals ∴ covalent bonding in compound										
			☑D phosphorus and chlorine are both non-metals ∴ covalent bonding in compound										
2007			A Covalent Network substances have covalent bonds in a large network of atoms										
	Α	79	B Substance is ionic due to presence of positive and negative ions										
6	/ \	17	🗷 C Substance contains covalent molecules. Not big enough to be covalent network										
			${f extsf{Z}}{f extsf{D}}$ Substance is metallic with electrons able to jump from atom to atom										
2008			A Metallic substance: conducts when solid and liquid										
	C	72	B Covalent substance: does not conduct when solid or liquid										
10		16	☑C Ionic Substance: Does not conduct when solid but conducts when liquid										
			🗷 D Covalent Network: high melting point and does not conduct when solid or liquid										
2000			🗷 A diagram shows a covalent network (sodium chloride is ionic)										
2009	D	ΛΟ	☑B diagram shows a ionic lattice and sodium chloride is ionic										
9	D	48	🗷C diagram shows a covalent molecules (sodium chloride is ionic)										
-			🗵 D diagram shows a metallic substance (sodium chloride is ionic)										
			A Carbon (diamond) is a covalent network with large tetrahedral structure										
2010	C	72	IB Helium is a Noble gas and comes in single atoms (monatomic)										
5	C	/3	$\square C$ Nitrogen has a C=C triple bond within the N ₂ molecule										
5			≥C Nitrogen has a C≡C triple bond within the N2 molecule ≥D Sulphur has an S8 ring structure										
			☑A Lead (metal) and fluorine (non-metal) forms an ionic compound										
2012		70	B Sulphur (non-metal) and oxygen (non-metal) forms a covalent compound										
7	A	81											
/			医C Carbon (non-metal) and nitrogen (non-metal) forms a covalent compound 区D Phosphorus (non-metal) and chlorine (non-metal) forms a covalent compound										
2012			Phosphorus and nitrogen are both in group 5 and NH3 and PH3 both										
2012	D	63	have a trigonal pyramidal shape										
9	D	05	(Trigonal pyramidal was previous H										
			called pyramidal)										
			☑A ions are locked together in a solid lattice so no conduction of electricity										
2012			B ions move through ionic compounds as it conducts, not electrons										
10	A	55	Solid metals conduct electricity										
10													
2012			ED ionic compounds always have positive and negative ions inside them										
2013	٨	77	Group 0 elements have a full outer shell and are stable. Elements in other groups										
6	A	//	can share electrons in covalent bonds to achieve a full outer shell.										
			X Couplest Malagulan, deed not conduct as solid as liquid and has low but										
2014	-		EA Covalent Molecular: does not conduct as solid or liquid and has low bpt										
	B	47	B Covalent Network: does not conduct as solid or liquid and has high mpt										
7		• •	EC Ionic: Does not conduct as solid but does conduct as a liquid										
			🗵 D Metallic: Conducts as both as solid and a liquid										

Int2	Answer	Reasoning									
2000 4c	Diagram showing:	H H H H H H H H H H H H H H H H H H H									
2002 2b(i)	Covalent bonding or electrons not free to move in silica	Silica is made of silicon and oxygen bonded together with formula SiO2. Bonding Solid Liquid Solution • Compounds containing only non- metals have covalent bonding • Covalent compounds to not conduct electricity in any state Bonding Solid Liquid Solution • Conspondence • Covalent compounds to not conduct electricity in any state • Covalent (metals + non-metals) • • • • • • • • • • • • • • • • • • •									
2002 2b(ii)	Covalent bonds must be broken to melt covalent network substance	Silica is a covalent network substance due to the strong covalent bonds between atoms. To melt a covalent network, all covalent bonds must be broken. This requires a great deal of energy high melting point									
2002 4b											
2003 12b	Each chlorine atom gains one electron	Chlorine atoms gain one electron each to become chloride ions $CI + e^{-} \longrightarrow CI^{-}$ 2,8,7 2,8,8									
2004 4 a		H Cl or H Cl XX									
2004 13a	Molecular covalent	Molecular Covalent Low melting/boiling point Covalent Network High melting point									
2006 2a	Shared pair of electrons between 2 atoms	Covalent bonding usually takes place between two non-metal atoms. The 2 atoms share electrons to form pairs and each atom has a full outer shell.									

		Four shapes to learn area:									
2006 2b	H H Trigonal Pyramidal shape	H-Cl H H H H H H H H H H H H H H H H H H H									
2007 13a(i)	2 or 2,0	Lithium atoms have an electron arrangement of 2,1 (p1 data booklet) Lithium ions attain a full outer shell by losing 1 electron Li \rightarrow Li ⁺ + e ⁻ 2,1 \rightarrow 2									
2008 5a	Tetrahedral	CFC molecule has similar in shape to methane									
2010 3a	covalent network	Covalent Carbon is a non-metal which forms covalent bonds Network Diamond is a covalent network due to its very high melting point									
2010 3b(i)	HO C BH	Methane CH ₄ is shown left. Other diagrams to learn include: Hydrogen chloride HCl HCl HCl HCl HCl HCl HCl HCl									
2010 3b(ii)	н нС тала, н	Tetrahedral methane is shown left. Other diagrams to learn include: HCl H2O NH3 H — Cl H — H H H Linear Angular Trigonal Pyramidal									
2011 1a	Covalent Network Ionic Lattice Metallic Lattice Discrete Covalent Molecular	Covalent Network Covalent as it does not conduct in any state and network due to high m.p. Ionic Lattice Ionic do not conduct when solid but do conduct when molten or in solutio Metallic Lattice Metallic substances conduct when solid Discrete Covalent Molecular Covalent as it does not conduct in any state and molecular due to low m.p.									
2011 2a		Any three dimensional pyramidal shape:									

²⁰¹¹ 2b	H O K	Also Acceptable: Horow Horow Horow Horow Kanala Horow Kan									
2012 1a	Covalent Network	 SiO₂ contains two non-metals ∴ Covalent bonding in compound Covalent network substances have high melting points Covalent molecular substances have low melting & boiling points 									
2013 6b	(Covalent) network	Silicon and oxygen are both non-metals \therefore covalent bonding in SiO ₂ Silicon dioxide has a melting point of 1700°C \therefore SiO ₂ can not be molecular as the melting point is too high and SiO ₂ is a covalent network.									
2014 4a	Diagram showing:	HONOH HONH H									
2014 4 b	Weak	Covalent molecular substances are often gases or liquids at room temperature because there are only weak attractions/bonds between the molecules.									
2015 2a	tetrahedral	Chloroform $CHCl_3$ has the same shape as methane CH_4 H Cl H									
		linear Angular trigonal pyramidal tetrahedral									
2015 2b(i)	weak strong	The bonds inside molecules are covalent bonds which are strong bonds. The bonds between molecules are not covalent bonds and these bonds are much easier to overcome so they are weak bonds.									
2015 3b		Each chlorine atom has 7 electrons of its own and shares an electron with another chlorine to achieve a stable full outer shell of 8 electrons.									
2015 5 a	covalent or covalent molecular	Titanium chloride is a compound containing a metal and a non-metal. This would normally form an ionic compound. However, ionic compounds are all solids at room temperature with high melting points but titanium chloride is a liquid at room temperature. Metallic bonding can be ruled out as it is a compound so (molecular) covalent is left due to the low melting and boiling points.									

Na	Nat5 Past Paper Question Bank JABChem														-	
Traffic	: Lights			Unit	t 1.:	2b (ova	lent	Bon	ding			J	AISC	che	m
Outcome				<u>2003</u>												
	<u>Credit</u>	<u>Credit</u>	Credit	<u>Credit</u>	<u>Credit</u>	Credit	Credit	Credit	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	Credit	<u>Credit</u>	Credit		
17 18		16c		11b	13a			15b	10b	12a	15c			17b		
19 22						15a							13a			
20																
21	13d			10c	13b(i) 13b(ii)		9b	15a		12b				17a		
23																
24			12a(ii)								14a					
25																
26																
27																
28																
29 30																
31																
32																
33																
34													18a			
35		18d							13c	10c						
36								19c (i)								
-				13a+b												

SG Credit	Answer	Reasoning								
²⁰⁰⁰ <i>C</i> 13d	Cl Simme Cl Cl	 SiCl₄ has the same tetrahedral shape of methane CH₄ Si can substitute for carbon as they are both in group 4 Chlorine can substitute for hydrogen as they both have a valency of 1 								
2001 <i>C</i> 16c	Answer to include:	2 electrons form a shared pair between atoms. Atoms must be set distance apart for electrons to form a stable pair instead of remaining as two unpaired electrons								
²⁰⁰¹ <i>C</i> 18d	ions free to move when molten	Solid ionic compounds do not conduct as their ions are not free to move. Melting or dissolving free up the ions and they are able to move during electrolysis.								
2002C 12a(ii)	Covalent compounds have lower melting/boiling points and can be l covalent bonding Ionic compounds have higher melting points are all solid at room t									
2003 <i>C</i> 10c	н нСлппа н н	HCI H ₂ O NH ₃ CH ₄ H CI O H H H H H H H H H H H H H H H H H H								
2003 <i>C</i> 11b	Answer to include:	2 electrons form a shared pair between atoms. Atoms must be set distance apart for electrons to form a stable pair instead of remaining as two unpaired electrons								
2003 <i>C</i> 13a	silver nitrate solution	n grey solid at -ve electrode is silver: $Ag^+ + e^- \rightarrow Ag$								
²⁰⁰³ <i>C</i> 13b	covalent covalent compounds do not conduct when solid, liquid or in solut									
2004 <i>C</i> 13a	2 electrons form a shared pair between atoms. Atoms must be Answer to include: distance apart for electrons to form a stable pair instead of remaining as two unpaired electrons									
2004 <i>C</i> 13b(i)	H H H H	Nitrogen has 5 outer electrons (1 pairs and 3 unpaired) Hydrogen has 1 unpaired electron 3 hydrogen atoms, each with a unpaired electron, pair up with the 3 unpaired electrons of an nitrogen to form a NH3 molecule								
2004 <i>C</i> 13b(ii)	H H H	Ammonia NH₃ forms a trigonal pyramidal molecule								

2005 <i>C</i> 15a		Any diagram with overlapping of 3 half-filled electron clouds and a non-bonding pair of electrons							
2006 <i>C</i> 9b	н н	HCI H CI Linear					CH4 H H H Tetrahedral		
2007 <i>C</i>	••	H becomes s	table with 2 el	ectrons in (outer shell.				
15a	H CI CI	Cl becomes s	table with 8 el	ectrons in	outer shell.				
²⁰⁰⁷ <i>C</i> 15b	Any answer from:	to form a full/complete/stable electron shell to become stable to achieve same electron arrangement as Noble gas to get 8 outer electrons							
2007 <i>C</i> 19c(i)	to complete circuit	The ions in the electrolyte move between electrodes to complete the circuit							
2008 <i>C</i>	positive	Covalent bonds are formed when two non-metal atoms share a pair of							
10b	electrons	electrons to help achieve a stable electron outer shell.							
			Bonding	Solid	Liquid	Solution	-		
	ions free to move in solution but not in solid		Metallic (metals only)	\checkmark	✓	-	-		
2008 <i>C</i>			Covalent on-metals only)	×	×	×			
13c		(met	Ionic rals + non-metals)	×	\checkmark	\checkmark			
		In a solid ionic compound, ions are held tightly together in a lattice and are not free to move ∴solid ionic is a non-conductor. When molten or dissolved in water, the lattice of ions breaks up and the ions are able to move ∴liquid and solution ionic compounds conduct.							
2009 <i>C</i> 10c	Ions free to move	Solid Ionic CompoundsIons unable to move in ionic latticeMolten Ionic CompoundsIons free to moveIonic Compound SolutionsIons free to move							
2009 <i>C</i> 12a	Covalent	Hydrogen is a non-metal, chlorine is a non-metal Type of bonding in hydrogen chloride molecule: Covalent							
2009 <i>c</i> 12b	Diagram showing:	ng: H H H H H H H H H							

2010C 14a	Covalent	 Titanium (IV) chloride contains a metal and a non-metal in the compound Metals and non-metals usually join to form ionic bonding Ionic bonding results in a high melting and boiling points Titanium (IV) chloride contains covalent bonding as it is a liquid at room temperature so must have a boiling point below 20°C 								
2010C	Protons	A covalent bond is a shared pair of electrons between two atoms. The								
15c	Electrons	electrostatic attraction between the negative electrons and the positive nuclei holds the covalent bond together								
2012 <i>C</i> 13a	HOH	Hydrogen atoms pair up to form a covalent bond between them. A covalent bond is a shared pair of electrons.								
2012 <i>C</i>		Bonding Type Metallic Covalent Ionic								
18a	Ionic	Elements in Metals Non-metals At least 1 metal Bonding Type Only Only and 1 non-metal								
^{2013C} 17a	Diagram showing:	$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$								
2013 <i>C</i>	positive	A covalent bond is a shared pair of electrons between two atoms. As the positive nuclei would repel each other, it is the attraction of the								
17b	electrons	positive nuclei for the shared pair of electrons holds the molecule together.								

Nat5 Past Paper Question Bank JABChem																
Traffic	: Lights			Uni	t 1.	2b (ova	lent	Bon	ding			J	AISC	che	M
Outcome			<u>2002</u>													
	<u>General</u>															
17 18		18a(ii)	13b								10c	10b				
19 22																
20		18a(i)				9a				14b	15a					
21																
23																
24																
25																
26																
27																
28																
29 30																
31																
32													18a			
33																
34																
35	18b					15b		17b			19b		18b			
36																
-																

SG General	Answer	Reasoning								
2000G	ions not free	In the solid state, ionic compounds do not conduct electricity as its ions								
18b	to move when solid	are not free to move.								
2001G	two atoms	Diatomic molecules are molecules with 2 atoms bonded together in a molecule								
18a (i)	bonded together									
2001 <i>G</i>		Molecules always contain covalent bonding.								
18a(ii)	covalent									
2002 <i>G</i>		Elements in Substance Metals Only Non-metals Only Metals + non-metals								
13b	covalent	Type of bonding Metallic Covalent Ionic								
2005 <i>G</i>	2 atoms	Diatomic molecules are when two atoms are joined together by at								
9a	joined by bond	least one chemical bond Diatomic Elements: H2, N2, O2, F2, Cl2, Br2, I2								
2005 <i>G</i>	Ions are	Solid Ionic compounds cannot conduct due to ions being unable to move								
15b	free to move	freely. Molten and dissolved ionic compounds have ions free to move.								
2007 <i>G</i>	T	In solid ionic compounds, ions are tightly held in ionic lattice and are								
17b	Ions cannot move when solid	unable to moveionic solids do not conduct electricity Melting or dissolving ionic compounds breaks up the ionic lattice and								
170	when some	allows the ions to move ionic liquids/solutions conduct electricity								
2009 <i>G</i>	2 atoms joined	Diatomic molecules have 2 atoms joined together by covalent bonds:								
14b	together	Element hydrogen nitrogenoxygenfluorinechlorinebromineiodineFormulaH2N2O2F2Cl2Br2I2								
2010G										
10c	covalent bonds	Methane CH4 is a covalent molecule as it is made up on non-metal atoms only.								
2010G	d:	A diatomic molecule is a 2 atom molecule joined by covalent bond(s)								
15a	diatomic									
2010G	Ions free to	In solid ionic substances, the ions are held tightly in a lattice of oppositely charged ions and are unable to move. This prevents conduction of electricity.								
19b	move in solution When ionic substances are melted or dissolved, the tightly held lattice breaks substance is able to conduct as the ions can move to the oppositely charged el									
2011G		Substance is uble to conduct as the fors can move to the oppositely charged electrode.								
10b	covalent bonds	N_2H_4 is covalent as it only contains non-metals in the compound.								
2012 <i>G</i>		Ions are held together in an ionic lattice by electrostatic attraction between positive and negative ions.								
18a	Lattice									
2012 <i>G</i>	Ions are unable to	In solid ionic substances, the ions are held tightly together and are unable to move solid ionic substances do not conduct. When ionic substances are melted or dissolved, the lattice structure breaks up and the ions are now free to move. Liquid and solution ionic compounds can conduct electricity (compound is broken down as it conducts)								
18b	move in solid lattice									